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Summary

Background and objectives Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is a rare
autosomal recessive renal tubular disease. It is caused by mutations in CLDN16 and CLDN19, encoding claudin-
16 and -19, respectively. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is usually com-
plicated by progressive CKD. The objectives of this study were to describe the clinical and genetic features of
familial hypomagnesemia with hypercalciuria and nephrocalcinosis and analyze phenotype—genotype associ-
ations in patients with CLDN16 or CLDN19 mutations.

Design, setting, participants, & measurements Data from 32 genetically confirmed patients (9 patients
with CLDN16 and 23 patients with CLDN19 mutations) from 26 unrelated families were retrospectively
reviewed.

Results Diagnosis was based on clinical criteria at a median age of 9.5 years and confirmed by genetic testing at a
median age of 15.5 years. In total, 13 CLDN16 or CLDN19 mutations were identified, including 8 novel mutations.
A founder effect was detected for the recurrent CLDN16 p.Alal39Val mutation in North African families and the
CLDN19 p.Gly20Asp mutation in Spanish and French families. CKD was more frequently observed in patients
with CLDN19 mutations: survival without CKD or ESRD was 56% at 20 years of age in CLDN19 versus 100% in

CLDN16 mutations (log rank P<0.01). Ocular abnormalities were observed in 91% of patients with CLDN19
mutations and none of the patients with CLDN16 mutations (P<<0.01). Treatments seem to have no effect on

hypercalciuria and CKD progression.

Conclusions Patients with CLDN19 mutations may display more severe renal impairment than patients with
CLDN16 mutations. Ocular abnormalities were observed only in patients with CLDN19 mutations.
Clin ] Am Soc Nephrol 7: 801-809, 2012. doi: 10.2215/CJN.12841211

Introduction

Familial hypomagnesemia with hypercalciuria and
nephrocalcinosis (FHHNC; Online Mendelian Inheri-
tance in Man 248250) is a rare autosomal recessive
disease first described as Michelis-Castrillo syndrome
(1). Only 87 patients (51 families) have been de-
scribed to date in international publications (2,3). It
is caused by mutations in the CLDN16 and CLDN19
genes, encoding claudin-16 and -19 (4,5). These two
proteins are expressed in the tight junction of the
thick ascending limb (TAL) of Henle’s loop and are
involved in the paracellular reabsorption of calcium
and magnesium (6). Claudin proteins are expressed
in various tissues, and claudin-19 has also been detected
in the retinal epithelium (7). Mutations of these genes
are responsible for urinary loss of magnesium and
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calcium, resulting in hypomagnesemia, hypercalciuria,
nephrolithiasis, and nephrocalcinosis. FHHNC patients
suffer from progressive CKD, which may lead to ESRD
in the teens or 20s (2). No difference in renal phenotype
between patients with mutations in these two genes has
yet been described. By contrast, severe ocular involve-
ment (macular coloboma, pigmentary retinitis, nystag-
mus, or visual loss) has been described in CLDN19
patients, whereas only mild nonspecific ocular involve-
ment (myopia, astigmatism, hypermetropia, or strabis-
mus) has been reported in some CLDNI16 patients
(3,6,8).

In this study, we aimed to describe the clinical fea-
tures, molecular genetics, and disease outcome, focus-
ing on renal progression, in a cohort of 32 patients with
mutations in the CLDN16 or CLDN19 genes.
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Materials and Methods
Patients

Clinical and biochemical data for 32 genetically defined
FHHNC patients from 26 families were studied retrospec-
tively. Data collected included demographic, genetic, clin-
ical, and biologic data obtained at diagnosis and during
follow-up. Estimated GFR (eGFR) was calculated with the
updated Schwartz formula for children and the Modifica-
tion of Diet in Renal Disease formula for adults (9,10).

Genetic Studies

Detection of Point Mutations. Genomic DNA was ex-
tracted by standard methods from peripheral blood sam-
ples after written informed consent had been obtained from
the patients or their parents. Mutation analysis was per-
formed based on PCR amplification followed by sequencing
as described (11,12) (primers available on request) on an
ABI Prism 3730XL DNA Analyzer (Perkin Elmer Applied
Biosystems, Foster City, CA). Mutations were interpreted,
and the degree of amino acid conservation between ortho-
logs and Grantham distance was assessed with Alamut
v.2.0 software (Interactive Biosoftware, Rouen, France;
http:/ /www.interactivebiosoftware.com/). Complemen-
tary analyses were performed with SIFT (http://www.
Blocks.therc.org/sift/SIFT.html), PolyPhen-2 (http:/ /genetics.
bwh.harvard.edu/pph/), MutationTaster (http://www.
mutationtaster.org/), SNPs&Go (http://snps-and-go.
biocomp.unibo.it/snps-and-go/), and MutPred (http://
mutpred.mutdb.org/) algorithms.

Quantitative Multiplex PCR for Short Fluorescent
Fragments. We adapted the quantitative multiplex PCR for
short fluorescent fragments (QMPSF) method (13) for the
detection of large rearrangements of the CLDN19 gene for
patients with homozygous mutations and no history of
consanguinity for whom parental DNA was not available.
Each multiplex PCR included a set of specific primers for
each exon (primers available on request), and a fragment
from the hydroxymethylbilane synthase gene was the
internal control. The forward primer of each pair was 5’
end-labeled with 6-FAM fluorochrome. Amplified DNA
fragments were separated by capillary electrophoresis on
an ABI Prism 3730XL DNA Analyzer (Applied Biosys-
tems, Foster City, CA). Data were analyzed with Gene-
Mapper Software version 4.0 (Applied Biosystems, Foster
City, CA). Each QMPSF reaction was validated with pos-
itive and negative reference DNAs.

Haplotype Analysis. Haplotype analysis was carried out
in families harboring two recurrent mutations (p.Ala139Val
for CLDN16 and p.Gly20Asp for CLDN19) to determine
whether these families were descended from a common
ancestor. Polymorphic microsatellite markers flanking
each locus were amplified by PCR, subjected to automated
capillary electrophoresis, and sized with GeneMapper v
4.0 software. We used the markers D351294, D3S1314,
and D351288 (GenBank accession numbers 716944,
717168, and Z16855) for CLDN16 with the following ge-
netic map: D351294, 0.4 cM; D351314, 0.01 cM; CLDNI16,
0.1 cM; D3S1288. For CLDN19, we used markers D15463,
D15193, and D15447 (GenBank accession numbers Z23403,
716490.1, and Z23291.1) with the following genetic map:
D15S463, 0.5 cM; D1S193, 0.18 cM; CLDN 19, 0.75 cM;
D15447.

Statistical Analyses

Results were expressed as median and interquartile
range (IQR) for continuous variables and percentages for
categorical variables. Comparative analyses of qualitative
variables were carried out with the chi-squared or Fisher
exact test, whereas comparisons of quantitative variables
were based on t or Wilcoxon test in cases of skewed dis-
tribution. CKD-free survival was estimated from birth
with a time to failure Kaplan—-Meier method. The endpoint
was the first measurement of eGFR below 60 ml/min per
1.73 m?. Data were censored at the last available measure-
ment. ESRD-free survival was also estimated. Log rank
tests were used to compare subgroups. A P value<0.05
was considered statistically significant. Statistical analyses
were performed with SAS 9.1 (SAS Institute, Cary, NC).

Results
Demographics

Thirty-two patients (14 male and 18 female) from 26
unrelated families were included. Seventeen of the families
were Caucasian, seven were from North Africa, one was
from sub-Saharan Africa, and one was from the French
West Indies. One family included three affected siblings
(family 12), and four families included two affected siblings
(families 2, 9, 11, and 23).

Genetic Investigations

Molecular studies revealed CLDN16 mutations in the
probands of eight families and CLDN19 mutations in the
probands of 18 families (Tables 1 and 2). Patients 1, 2, 5,
17, and 18 have been described elsewhere (11,12,14).

CLDN16 Mutations. Six different mutations of the
CLDN16 gene were detected (five missense and one non-
sense) (Table 1). Three of the missense mutations (p.Cys80Tyr,
pLys183Glu, and p.Gly233Arg) had never been described.
They were not found in 100 control chromosomes and were
predicted to be deleterious by at least three of the in silico
methods (Supplemental Table 1). All patients were homo-
zygous for the detected mutation. Patients from three
North African families harbored the same missense muta-
tion (p.Alal39Val), and an analysis of microsatellite mark-
ers showed that they shared the same haplotype at the
disease locus (Figure 1), suggesting a common ancestor.

CLDN19 Mutations. Seven different mutations of the
CLDN19 gene were detected (three missense, two nonsense,
one frame shift, and one large deletion) (Table 2). Only two
of the missense mutations have been described before. The
probands of two families were compound heterozygous. All
the other patients were homozygous, although most had no
history of consanguinity. The known mutation, p.Gly20Asp,
was particularly frequent in our group of patients (homo-
zygous in 13 probands and heterozygous and associated
with a second mutation in 2 probands). The parents in
families 10, 20, and 26 were heterozygous, whereas QMPSF
ruled out heterozygous deletions in the other families. The
p-Gly20Asp mutation has been described as a founder ef-
fect in Spanish families. These results and the detection of
this mutation in 2 Spanish and 12 Southwest France pro-
bands are consistent with such a founder effect. An analysis
of microsatellite markers also provided support for this
hypothesis: most of the patients carrying this mutation
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Mutations of the CLDN16 gene in familial hypomagnesemia, hypercalciuria, and nephrocalcinosis patients
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“Sequences are numbered according to the cDNA sequence (GenBank accession number NM_006580). The A of the ATG initiator codon is denoted nucleotide 1.
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had the same haplotype at the disease locus or at least at
the closest D15193 marker (Figure 2).

Clinical and Biologic Presentation at Diagnosis

In this cohort of 32 patients, a family history of FHHNC
or other renal symptoms related to the disease (i.e., renal
failure, lithiasis, or tubulopathy) was present in 50% of
cases. The main symptoms at diagnosis included urinary
tract infections, nephrolithiasis, nephrocalcinosis, and
polyuria/polydipsia (Table 3). Age at onset ranged from
1 to 14 years, with a median age at onset of 7 years. Me-
dian ages at clinical and genetic diagnosis were 9.5 and
15.5 years, respectively. No significant difference in clinical
presentation was observed between patients with CLDN16
and CLDN19 mutations (Table 3).

Hypomagnesemia, hypercalciuria, and nephrocalcinosis
were present in all patients at diagnosis (Table 4). Hypo-
magnesemia and hypercalciuria were of similar severity in
the two groups. In addition to nephrocalcinosis, nine pa-
tients (28%) presented nephrolithiasis. Median eGFR at di-
agnosis was also similar in the two groups. Most of the
patients had elevated serum parathyroid hormone levels
despite a moderate reduction in eGFR (Table 4). Ocular
abnormalities were present at diagnosis in 21 of 23 pa-
tients (91%) with CLDN19 mutations. Ocular findings in-
cluded myopia (n=14), pigmentary retinitis (n=5), macular
coloboma (n=2), strabismus (n=3), astigmatism (n=2), and
nystagmus (n=1). No ocular disease was found in one 10-
year-old patient, and no data were available for the remain-
ing patient with a CLDN19 mutation. No ocular abnormality
was found in patients with CLDN16 mutations.

Clinical and Biologic Follow-Up

Median follow-up time since clinical diagnosis was 7.9
years (IQR=1.4-10.3) in patients with CLDN16 mutations
and 3.2 years (IQR=0.3-14.5) in patients with CLDN19 mu-
tations. Age at last follow-up was 12.4 (IQR=4.3-24.0) and
16.8 (IQR=10.5-27.9) years, respectively. Detailed follow-up
information was available for 6 patients with CLDN16 mu-
tations and 15 patients with CLDN19 mutations (Table 4).

At last follow-up, median eGFR was higher in CLDN16
patients (82 ml/min per 1.73 m?) than CLDN19 patients
(51 ml/min per 1.73 m?), although this difference was not
statistically significant (P=0.10). CKD, defined as an eGFR<60
ml/min per 1.73 m? was found in 3 (33%) patients with
CLDN16 mutations and 14 (61%) patients with CLDN19
mutations.

Survival analysis suggested that patients with CLDN19
mutations had a higher risk of progression to CKD and
poorer renal survival than patients with CLDN16 mutations.
Indeed, CKD-free survival was 100%, 100%, and 50% at 10,
20, and 30 years of age in the CLDN16 group. By contrast,
CKD-free survival was 91%, 56%, and 27% at 10, 20, and 30
years of age in patients with CLDN19 mutations (Figure 3)
(P<<0.01). One of nine patients with CLDN16 mutations and
CKD reached ESRD during follow-up at the age of 42 years;
6 of 23 patients with CLDN19 mutations presented ESRD
at a median age of 25 years (IQR=20-40).

High BP occurred in 10 patients (31%) at a median eGFR
of 63 ml/min per 1.73 m? (IQR=24-72). Mild protein-
uria (median=350 mg/d, IQR=180-500) was detected in
one-half of the patients for whom data were available (3 of
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Figure 1. | Haplotypes of three North African families carrying the p.Ala139Val mutation. Families 2 and 5 were consanguineous; family 6

has no history of consanguinity, but the mutation was homozygous.

6 with CLDN16 and 7 of 15 with CLDN19 mutations) at a
relatively late-stage CKD (median eGFR=42 ml/min per
1.73 m?). Rates of both high BP and proteinuria did not differ
between the two groups.

No significant change in magnesemia and calciuria was
observed between diagnosis and last follow-up in either of
the two groups, and hypercalciuria persisted even at
advanced stages of CKD. Patients were treated with
magnesium supplements (n=16), thiazide diuretics
(n=10), or indomethacine (n=7). However, urinary calcium
and serum magnesium concentrations were not signifi-
cantly affected by either treatment in either group.

Neurologic manifestations, mainly exercise intolerance
with electromyological alteration, were present in two
previously described patients (12). Electrophysiological
studies were not systematically carried out for the patients
without clinical manifestations. In addition, one patient
presented hypomagnesemia-related seizures.

Discussion

FHHNC is a rare, genetically heterogeneous disease.
Most patients described to date have mutations in the
CLDN16 gene. We describe here a large cohort of patients
with FHHNC mostly from France, and two-thirds had
CLDN19 mutations. There were three main findings of
our study: (1) FHHNC is often diagnosed late, (2) ocular
impairment occurred exclusively in patients with CLDN19
mutations, and (3) patients with CLDN16 and CLDN19
mutations may have different renal prognoses, with a

higher risk of CKD and ESRD in patients with CLDN19
mutations. These data contribute to improvements in the
phenotypic and genotypic characterization of FHHNC.

The molecular genetic analysis detected two mutated
alleles in all patients and expanded the spectrum of known
disease-causing mutations of these two genes. Six differ-
ent mutations of CLDN16 were detected (five missense
and one nonsense); three of the missense mutations were
previously unknown (p.Cys80Tyr, p.Lys183Glu, and
p-Gly233Arg). These mutations affect the first and third
transmembrane domains and the second extracellular
loop. They result in the replacement of highly conserved
amino acids and are probably pathogenic given their pre-
dicted biologic consequences (Supplemental Table 1). The
haplotype and geographic origins of three families harbor-
ing the recurrent known p.Alal39Val mutation were con-
sistent with a founder effect. For CLDN19, five of seven
mutations detected were previously unknown: one mis-
sense (p.Pro28Leu affecting the first transmembrane do-
main), two nonsense (p.Trp18X and p.GIn57X), one frame
shift (p.Thr135LeufsX9), and one large deletion (E1_E4del).
All the previously described mutations of this gene were
missense (5). Most of the novel mutations described here
result in the production of unstable mRNAs or truncated pro-
teins. Interestingly, the previously described p.Gly20Asp
mutation was identified in 15 patients from 14 different
families. All of these patients came from southwest France
or Spain. The haplotype data were consistent with a
founder effect, which was previously identified in Spanish
families (5).
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Figure 2. | Haplotypes of 14 nonconsanguineous French and Spanish families carrying the p.Gly20Asp mutation. In probands of fam-
ilies 17 and 25, this mutation was heterozygous and associated with a second mutation; the probands of all the other families were

homozygous.

Table 3. Clinical characteristics of patients with CLDN76 and CLDN19 mutations
Demographic Characteristics CLDN16 (n=9) CLDN19 (n=23) P Value
Sex ratio (male/female) 4/5 10/13 1.00
Age at first symptoms (years) 7.0 (3-14) 8.0 (1-13)? 0.83
Age at clinical diagnosis (years) 7.0 (3-14) 10.0 (1-21) 0.51
Age at genetic diagnosis (years) 11.0 (3-23) 19.0 (10-28) 0.12
Initial signs
nephrocalcinosis 1 (%) 5 (55.5) 6 (26.1) 0.40
nephrolithiasis 1 (%) 1(11.1) 4(17.4) 1.00
urinary tract infections 1 (%) 3 (33.3) 4 (17.4) 0.37
abdominal pain 7 (%) 2(22.2) 2 (8.7) 0.55
polyuria-polydipsia 1 (%) 2 (22.2) 4 (17.4) 1.00
enuresis 1 (%) 0 3(13.0) 0.54
high BP n (%) 0 1(4.3) 1.00
asymptomatic 1 (%) 1(11.1) 3 (13.0) 1.00
Clinical progression
nephrocalcinosis 1 (%) 9 (100) 22 (100)* 1.00
nephrolithiasis 1 (%) 1(12.5) 8 (42.1)* 0.20
ocular impairment n (%) 0 21 (91.3) <0.01
neurologic impairment 7 (%) 2 (22.2) 1(4.3) 1.00
high BP 1 (%) 2 (22.2) 8 (34.8) 0.68
failure to thrive 1 (%) 1(14.7) 6 (37.5) 0.61
Values are expressed as percentages with the exception of age, which is expressed as median and interquartile range. Superscript values
correspond to the numbers of missing data.
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Table 4. Biologic characteristics of patients with CLDN16 and CLDN19 mutations
CLDN16 (n=9) CLDN19 (n=23) P Value
Initial biologic findings
serum magnesium concentration (mmol/L) 0.49 (0.39-0.60)° 0.59 (0.50-0.60)° 0.15
urinary calcium to creatinine ratio (mmol/mmol) 0.8 (0.3-5.3)! 1.0 (0.8-1.7)° 0.40
serum creatinine concentration (umol/L) 67.0 (51.0-76.0)* 102.0 (60.0-121.0)° 0.07
GFR (ml/min per 1.73 m?) 71.0 (59.0-92.0)* 66.0 (57.0-77.0) 0.46
GFR=60 ml/min per 1.73 m? 7 (77.8) 14 (60.9) 0.53%
15<GFR<60 ml/min per 1.73 m* 2 (22.2) 5(21.7) 0.53%
ESRD 0 4 (17.4) 0.53%
PTH concentration (pg/ml) 107 (107-110)” 134 (115-166)° 0.44
Biologic findings at last follow-up
serum magnesium concentration (mmol/L) 0.54 (0.38-0.52)" 0.58 (0.52-0.60)° 0.46
urinary calcium to creatinine ratio (mmol/mmol) 0.7 (0.3-1.4)° 0.7 (0.4-1.3)8 0.84
GFR (ml/min per 1.73 m%; n=17) 82.0 (52.0-93.0)° 51.0 (43.0-73.0)'° 0.10
GFR = 60 ml/min per 1.73 m? 6 (66.6) 9(39.1) 0.40°
15<GFR<60 ml/min per 1.73 m* 2(22.2) 8 (34.8) 0.40%
ESRD 1(11.1) 6 (26.1) 0.40°
Values are expressed as medians and interquartile ranges or percentages. Superscript values indicate the numbers of missing data.
PTH, parathyroid hormone.
“Chi-squared test for the three groups.
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Figure 3. | Survival without reaching CKD stage 3 by genotype.

FHHNC was diagnosed on the basis of the presence of
hypomagnesemia, hypercalciuria, and nephrocalcinosis in
all 32 patients. Median time to diagnosis was 2.5 years,
suggesting that physicians were insufficiently aware of this
rare disease. FHHNC is frequently complicated by progres-
sive renal failure. In the cohort of patients with CLDN16
mutations described in the work by Konrad et al. (2), ESRD
was reported in 30% of patients at 15 years and 50% of
patients at 20 years. In our study, approximately one-third
of patients already had CKD at diagnosis, and more than
20% had reached ESRD at last follow-up at a median age
of about 15 years, which is consistent with the findings of
Konrad et al. (2). However, the risk of ESRD in patients
with CLDN19 mutations was two times the risk of patients
with CLDN16 mutations.

The pathogenesis of progressive renal failure in patients
with FHHNC remains unclear. Progressive tubulointersti-
tial nephropathy is probably not directly caused by hyper-
calciuria and nephrocalcinosis, because no correlation was
found between the degree of nephrocalcinosis and CKD
progression. Interestingly, Japanese Black cattle harboring
large deletions of the CLDN16 gene have chronic intersti-
tial nephritis and CKD (15,16). In the first pathologic study
of this bovine model, the work by Sasaki et al. (17) described
lesions classed as “renal tubular dysplasia” with a secondary
decrease in the number of nephrons. The work by Okada
et al. (18) described a decrease in the number of glomeruli
with immature tubules, secondary interstitial fibrosis, and
lymphocytic infiltration, resulting in abnormal nephron de-
velopment. Therefore, it has been suggested that defective
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claudin-16 function disruption may occur very early in the
development of tubular tight junctions (2). Unfortunately, no
equivalent data are available for humans. However, we can
speculate that the early onset of ESRD may result from ab-
normal renal development complicated by fibrosis and
nephrocalcinosis (19).

How can we account for the difference in renal outcome
between patients with CLDN16 and CLDN19 mutations
without differences in BP or protein excretion? The work
by Konrad et al. (2) showed that some mutations of the
CLDN16 gene (such as Leul51Phe) resulted in residual
function, with a slower progression to renal failure. Five
of six CLDN16 mutations described in this study are
missense that could have a similar residual function. Con-
cerning CLDN19 mutations, no genotype—phenotype corre-
lation has been published. In our study, 15 of 23 patients
with CLDN19 mutations had the recurrent p.Gly20Asp mu-
tation that results in the production of a protein retained
within the cell (5). Five other patients had nonsense, large
deletion, or frame shift mutations. Thus, phenotype sever-
ity with higher risk of ESRD could be explained by com-
plete loss of function mutations detected in our cohort.

Claudin-16 and -19 have also been shown to act in syn-
ergy in the reabsorption of calcium and magnesium in TAL
(20,21): claudin-16 increases cation permeability, whereas
claudin-19 decreases anion permeability. A direct interaction
between these two proteins seems to be important for the
maintenance of cation selectivity. It has been suggested that
the phenotype of patients with mutated claudin-19 may re-
sult in part from the defective functioning of claudin-16 (22).

It has also been suggested that other claudins may be
involved in paracellular reabsorption and regulation or
interact with claudin-16 and -19. TAL also expresses
claudin-3, -10b, -11, and -14, and distal tubule expresses
claudin-3 and -8. Two works suggest that claudin-14 could
play a role in urinary calcium excretion: in Cldn11/Cldn14
double mutant mice, a mild increase in urinary calcium and
magnesium excretion was observed (23), and in Icelandic
and Dutch populations, an association between two syn-
onymous single nucleotide polymorphisms of claudin-14
gene and a higher risk to develop kidney stones and re-
duced bone mineral density was described (24). Neverthe-
less, the mechanism and the nephron segment involved in
these observations have not been established. Regarding a
possible interaction between claudins, in vitro studies have
shown that the loss of either claudin-16 or -19 has no effect
on the junctional localization of claudin-10 and -18 (21).
Furthermore, phenotypic variability was recently shown
in a kindred with three affected members harboring a
CLDN16 mutation (25), suggesting the possible involve-
ment of other genes or epigenetic factors.

Mutations of CLDN19 are also associated with extrare-
nal manifestations, such as ocular abnormalities. Several
claudins are expressed in human cornea and retina (26,27).
Claudin-19 is the prominent claudin expressed in fetal reti-
nal pigment epithelium, and in minor proportion, claudin-3
is expressed; claudin-16 expression in this epithelium seems
to be extremely low. Knockdown of claudin-19 by small
interfering RNA abolishes the transepithelial electrical re-
sistance, showing the importance of this protein in the per-
meability characteristics of this epithelium (28). Neurologic
manifestations were previously described in two patients

with CLDN19 mutations included in this study (12). Extra-
renal symptoms may be accounted for by the expression in
other tissues of claudin-19 described in the Cldn19-null
mouse, which presents peripheral nervous system deficits
caused by the absence of claudin-19 in the tight junction of
the Schwann cells of peripheral myelinated axons (29).

Patients have been treated with thiazides and indometh-
acin to decrease hypercalciuria. Indomethacin decreases
sodium reabsorption in the proximal tubule and may also
increase the passive paracellular reabsorption of calcium
(30). In this study, these treatments were found to have no
effect on hypercalciuria, but data were obtained for only a
limited number of patients.

The limitations of our study include its retrospective
design, the multicentric nature of the population, and miss-
ing follow-up data. The relatively small population and the
small number of events because of the rarity of the disease
limit the power of this study to detect differences in disease
expression between the two groups.

This study of 32 patients with FHHNC led to the identi-
fication of novel and recurrent mutations in the two genes
known to be involved in this disease. Phenotypic analysis
showed a similar clinical presentation in patients with
mutations in either of these two genes except ocular ab-
normalities, which were found only in patients with
CLDN19 mutations. The follow-up data also suggested that
patients with CLDN19 mutations have a higher risk of pro-
gression to CKD and a poorer renal outcome.
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